

New possibilities offered by 3D

Ahmed.Jerraya@cea.fr

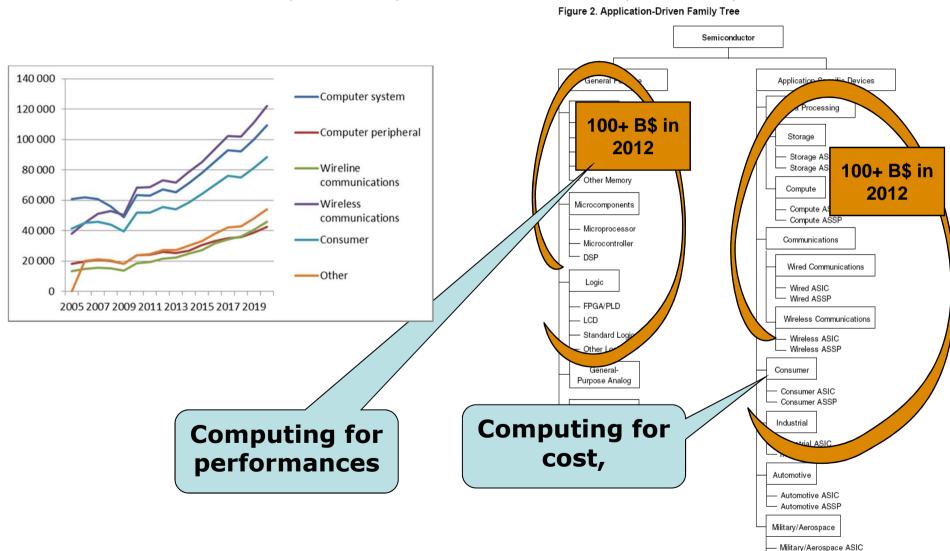
Grenoble France

www.cea.fr

leti & list

Key message: 3D is impacting semiconductor markets

- IC markets are dominated by computing i.e Logic, Memory and I/O;
- The key challenges for future high-end computing chips are
 Yield/Cost, power, data transfer and I/O, Heterogeneous Integration
- 3D is Happening
 - To improve yield cost and power
 - to shorten distances and increase bandwidth in a single chip, ...
 But off-chip I/O will be the bottleneck. Si-Photonics will be soon required for chip to chip on board and later on Interposer (2.5D)
 - To enable Heterogeneous Integration
- Implications on semiconductor will be disruptive



- The semiconductor Market
- 3 Top Trends in Semiconductors
 - 3D to master Cost , Yield and Power
 - 3D to master on chip and off chip Interconnect
 - 3D to enable Heterogeneous Integration
- Implications on Semiconductor

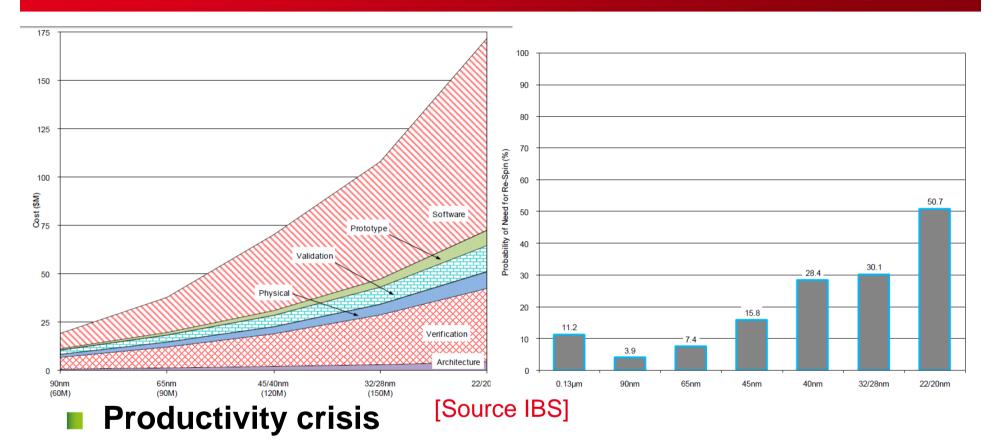
IC Market

From 270 B\$ (2012) to 460B\$ (2019) <IBS 2012>

© CEA. All rights reserved

Military/Aerospace ASSP

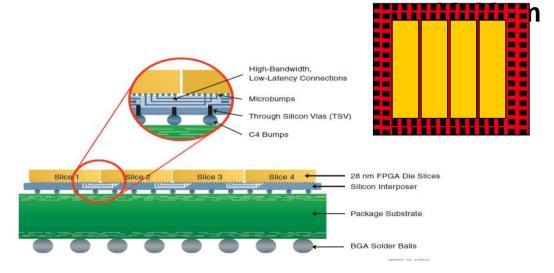
Computing Impacts larger Sectors

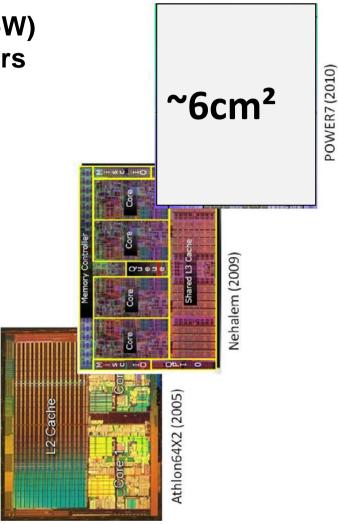

НРС	2005: \$9,2B 2010: \$14.2B	 HPC High End HPC Systems 25% Volume HPC Market, 75% Main Driver of Semiconductor Industry in 80's
PC	2005:\$343B 2010: \$464B	 PC-Desktop Market Driver of Semiconductor in 90's Introduced use of COTS
Embedd	ed 2005:\$577B 2010: \$896B	 Embedded Market Introduced use of IP, Driver of semiconductor in 2000's
	Future Computing	• Smart systems; IoT • New integration concepts • Driving semiconductor in 2010's

- The semiconductor Market
- 3 Top Trends in Semiconductors
 - 3D to master Cost , Yield and Power
 - 3D to master on chip and off chip Interconnect
 - 3D to enable Heterogeneous Integration
- Implications on Semiconductor

Ceatech

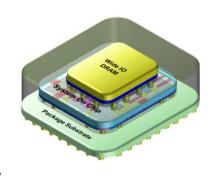
The cost and yield challenges

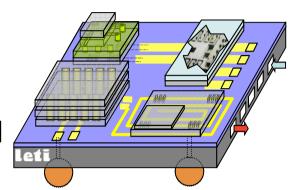

- Design Cost is rocketing, 170M\$ 22 nm
- Time to Market Crisis for
 - Design Respin rate reaching 50% for 22nm


Implications

- The reticule Wall
 - Maximum Integration on chip (6cm², 100+W)
 - Main semiconductor manufacturing drivers
 - High performances IC (CPU, GPU, FPGA)

The wall of Yield, cost, packaging ...

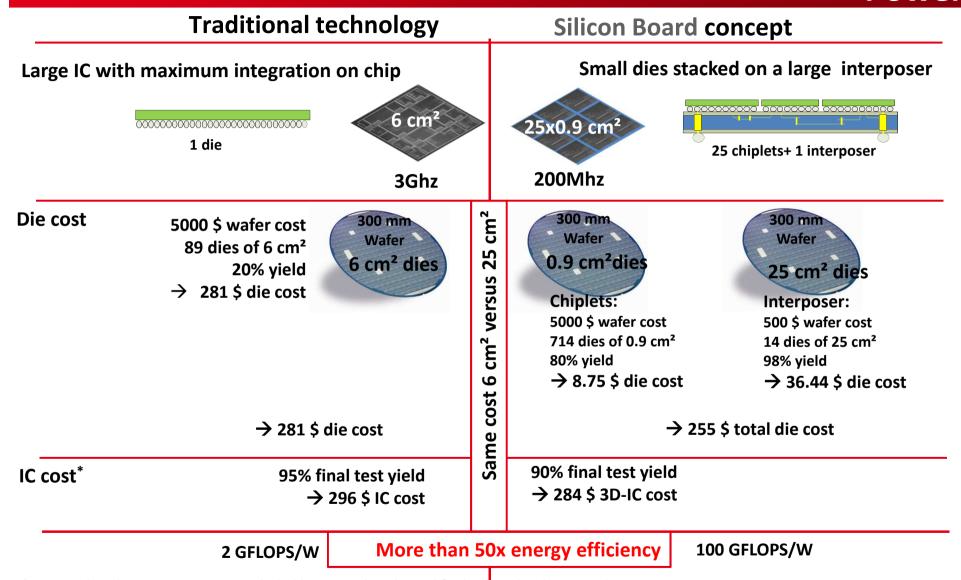

3D-IC Xilinx 28 nm


3D integration is happening

3D SoC

- 3D-stacked dies
- Memory-on-processor:
 - 3D memory hierarchy
- Processor-on-processor:
 - Many-core cluster
- High bandwidth
- Fine grain architecture partitioning
- High density for vertical interconnects
- Face-to-back

Silicon board



- Dies stacked on a silicon interposer
- Heterogeneous integration:
 - Digital, analog, memory, input/output, power management
- Medium bandwidth
- System partitioning
- High density for horizontal interconnects
- Face-to-face
- Large size silicon interposer

Silicon Board concept to reduce cost and ...

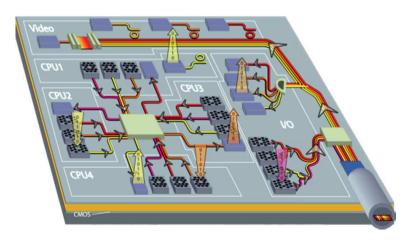
Power

^{*:} test and package costs are not included but considered equal for both technologies in this exercise

- The semiconductor Market
- **3 Top Trends in Semiconductors**
 - 3D to master Cost, Yield and Power
 - 3D to master on chip and off chip Interconnect
 - **3D** to enable Heterogeneous Integration
- **Implications on Semiconductor**

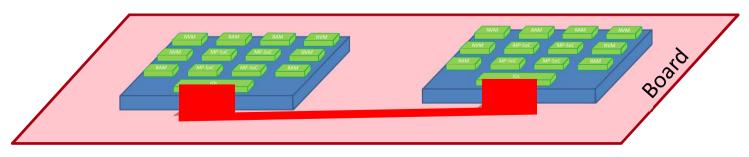
The Transfer Density Challenge

Memory-interconnect density is becoming the bottleneck

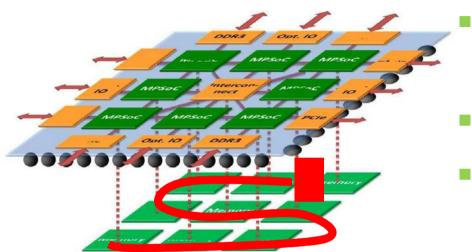

	Cost for 1TBps memory bandwidth			
Memory link, peak bandwidth and power consumption efficiency	Number of data IO pins	Interface power consumption		
Multi-core SoC DDR3 DRAM 8.532 GBps 30 mW/Gbps	3 800 Offchip	240 W		
1066 MHz I/O bus clock, 32 bits, 1.5 V, Double Data Rate				
Multi-core SoC LPDDR3 DRAM 6.4 GBps 20 mW/Gbps	5000 Off-chip	160 W		
800 MHz I/O bus clock, 32 bits, 1.2 V, Double Data Rate				
Multo-core SoC Wide I/O DRAM 12.8 GBps 4 mW/Gbps	41 000 Off-chip	32 W		
200 MHz I/O bus clock, 512 bits, 1.2 V, Single Data Rate				
>TBps 1 mW/Gbps Assume 200 MHz 50K pins connected to SERDES to Photonics	50 000 on chip + 40 Wavelengths (or 40 Wave guides) at 25Gbs	8 W + MUX- DEMUX?		

Why Si Photonics?

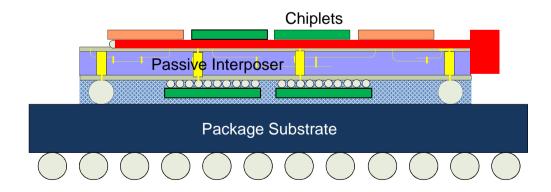
Si Photonics vs Electrical transfer


- Less energy than electrical-only (distance dependent)
 - 10Mb/s , 1km: ADSL
 - 10Gb/s , 1m: Inter Rack
 - 100Gb/s, 10cm: Chip to Chip on (Silicon) Board
 - 1Tb/s , 1cm: Silicon Board
- **Higher I/O bandwidth density**
- 3D accelerates Photonics Roadmaps

Ceatech


Data transfer Bottleneck for 1 TFLOP SOC

- 1 TFLOPs SoC / 10W doable in short tem (2014)
- Off-chip I/O (10Tb/s) 1 TFLOPs => 1 TB/s
 - Electrical solution:
 - 5pJ/b @ 10Gb/s = 50 mW/b
 - 1000 differential pin pairs 40W
- On Chip I/O
 - Bisection wires: 50Tb/s
- Hitting the I/O density limit
 - Silicon Photonics Solution is efficient at 1Tb/s/cm !!!!!!
 - <10 cm Chip to Chip Optical Link required for SoC

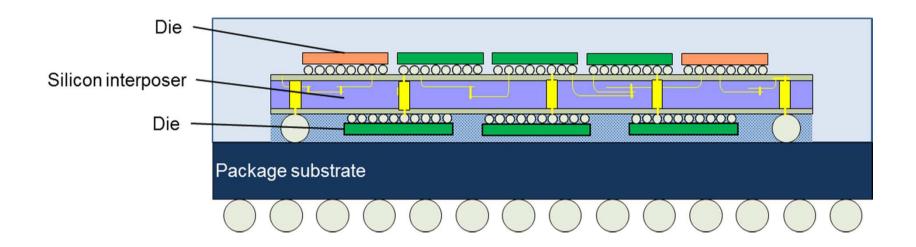


More Integration in the Roadmap

- 10 TFLOP SoC doable using Double sided Interposer
- Off-chip I/O 100Tb/s
- On Chip I/O
 - Bisection wires: 50Tb/s

On Interposer Optical Link required for 10 TFLOP SoC

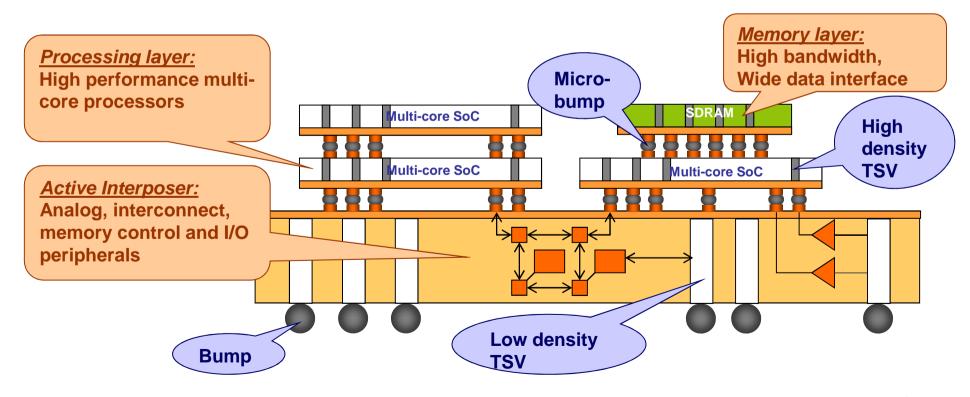
May require new Partitioning-architecture of the Photonic Link



- The semiconductor Market
- **3 Top Trends in Semiconductors**
 - 3D to master Cost, Yield and Power
 - 3D to master on chip and off chip Interconnect
 - **3D** to enable Heterogeneous Integration
- **Implications on Semiconductor**

Silicon Board for Heterogeneous Integration

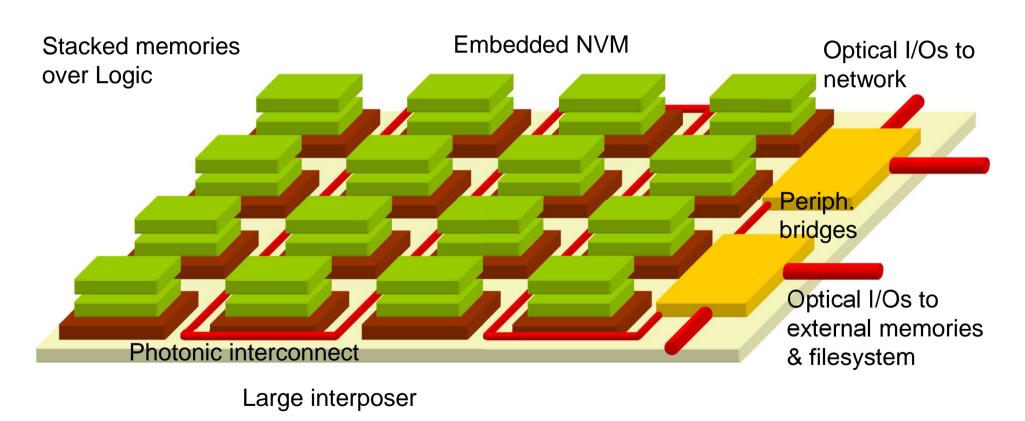
Backbone for heterogeneous integration of small dies, passives and photonics \rightarrow miniaturization


Interconnect with very low capacitive and inductive load

→ energy efficiency

Silicon Board for Heterogeneous Integration

- □ Heterogeneous integration rationale:
 □ Digital logic shrinks significantly with process technology
 □ Small dies shorten new process introduction and improve
 - overall yield
 - ☐ Analog design and IOs doesn't shrink a lot with process technology
- ☐ Short interconnect improves signal and power integrity
 → The SoC is partitioned into several dies, each of one being processed with the most relevant technology node in terms of performance and cost



- The semiconductor Market
- **3 Top Trends in Semiconductors**
 - 3D to master Cost, Yield and Power
 - 3D to master on chip and off chip Interconnect
 - **3D** to enable Heterogeneous Integration
- **Implications on Semiconductor**

Implication of 3D on IC design

Contents of a single package:

Ceatech

Technology add-on

Core 3D Technology (200 & 300 mm)

TSV Cu Damascene line

Bio Techno Modules Biocomp,...

Leti

Thermal

management

modules

Roadmap for Silicon Demonstrators

Specific packaging solutions

Mechanical Stress

management

modules

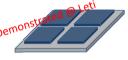
(stress buffer,

compliant int.)

Dicing, direct-on-board, biocompatibility

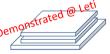
Stacking Interconnects,

Bonding Thinning RDL


Bumps

TSV last

Modules for RF (integrated antenna)


Today 2012-2013 Demo

Si interposer

TSV Ø10μm, 50μm pitch

Tomorrow 2013

Memory on Logic

Logic-on-analog

Logic-on-logic (Advanced on Mature)

2015

Active interposer (NOC interconnect)

Next >2016

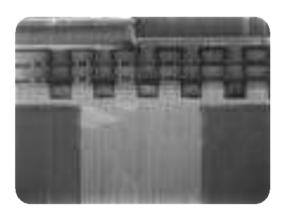
Modular and Stackable processor (NOC interconnect)

Cache memory on many core (3D network-in-memory)

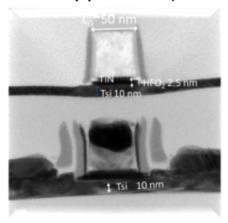
Fine grain partitionning Pitch <10µm

Silicon on Flex Modules

underfill, P&P


3D Technology Toolbox 200 & 300 mm

Roadmap 3D TSV vs Monolithic 3D


TSV (3D Parallel)

- « back-end » solution
- Mixing of heterogeneous chips (function, node)
- Low-medium density (~um size via, ~10-100um pitch)
- Early introduction as stop-gap and/or low cost

Monolithic (3D Sequential)

- « front end » solution
- Logic-on logic
- Same node on different levels
- Heterogeneous material integration possible (III-V on Ge on Si ...)
- Ultimate density (same size and pitch of vias and contact as technology node of application)

Key message: why 3D is changing **Semiconductor markets**

- The key challenges for future high-end ICs are Yield/Cost, power, data transfer and I/O, Heterogeneous Integration
- **3D** is Happening
 - To improve yield, cost and power
 - to shorten distances and increase bandwidth in a single chip, ... But off-chip I/O will be the bottleneck. Si-Photonics will be soon required for chip to chip on board and later on Interposer (2.5D)
 - To enable eNVM reducing static power consumption
 - To enable Heterogeneous Integration
- Implications on IC design and then semiconductor markets will be disruptive

Acknowledgement

- Design team: Fabien Clermidy, Denis Dutoit, Marc Belleville, José Luis Gonzalez, Pascal Vivet, Yvain **Thonnart**
- 3D Team: Severine Cheramy, Gilles Simon, Mark Scannel
- Silicon photonics team: Sylvie Menezo, Laurent Fulbert