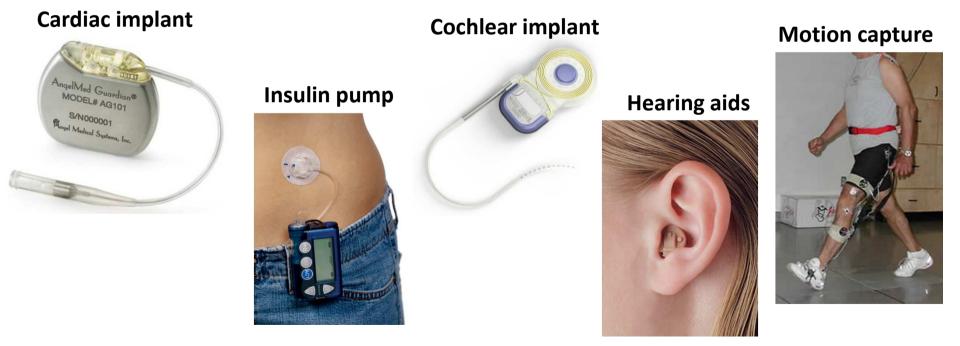
Smart Systems for Healthcare and Wellness

Wireless Communication Challenges and Solutions

Dr. Laurent Dussopt, CEA-LETI


Brussels, 4 February 2014.

Healthcare: medical devices

- Implants (cardiac, cochlear, insulin pumps)
- On-body devices: hearing aids, activity monitoring, rehabilitation

Healthcare: medical devices

- Implants (cardiac, cochlear, insulin pumps)
- On-body devices: hearing aids, activity monitoring, rehabilitation

Wellness: wireless sensing and communicating devices

- Sport: monitoring, training
- Gaming: motion capture and sensing
- Leisure: smart glasses (assisted, augmented vision)

Sport

Gaming

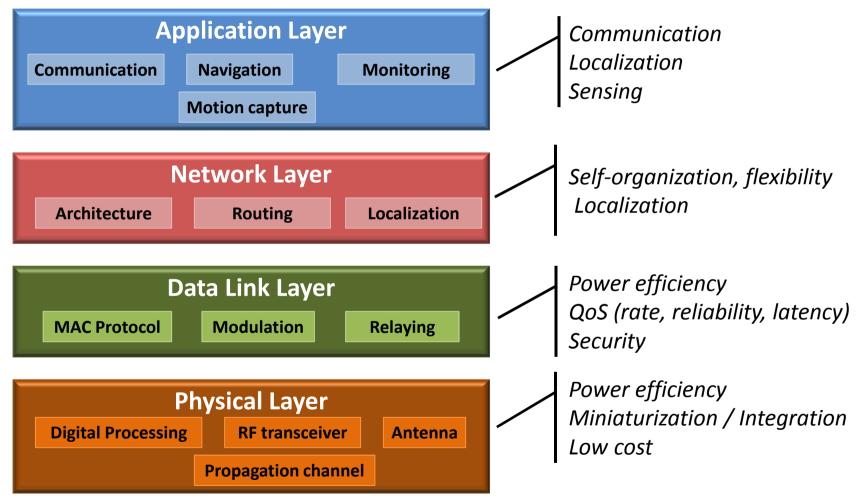
3

Healthcare: medical devices

- Implants (cardiac, cochlear, insulin pumps)
- On-body devices: hearing aids, activity monitoring, rehabilitation

Wellness: wireless sensing and communicating devices

- Sport: monitoring, training
- Gaming: motion capture and sensing
- Leisure: smart glasses (assisted, augmented vision)


Application drivers:

- Ageing population, healthcare costs, prevention
- Smart sensor technologies, ubiquitous wireless networks, IoT

Key challenges:

• Cost, Power consumption, Miniaturization, Security

Agenda

Introduction

Wireless solutions

Standards, MAC protocols, Security, Localization

Hardware solutions

Low-power radios, Miniature antennas, Reconfigurability, Integration

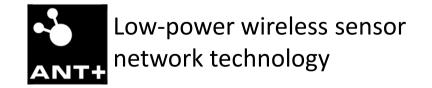
EM environment

Propagation, EM exposure and dosimetry

Conclusion

Wireless solutions

Standards needed for interoperability of Smart Systems


ISO/IEEE 11073 Health informatics - Medical / health device communication standards

IEEE 802.15.4j Medical BAN IEEE 802.15.6 Wireless BAN

ZigBee Health Care

Security

Medical devices shall not be vulnerable to security attacks

(highly sensitive personal informations)

- Availability: the communication service should be robust against service denial.
- **Confidentiality:** information should not be disclosed to illegitimate entities.
- Integrity: the integrity of the delivered message should be guaranteed.
- Authentication: nodes should be able to identify each other.
- Non-repudiation: a message origin may not be disclaimed.

Wireless solutions

Adaptive and low-power communication protocols for Body Area Networks

Flexible and transparent for several application profiles

- Autonomously and dynamically adaptive (network size, topology)
- Trade off between QoS and energy consumption
- Adapted to heterogeneous traffics

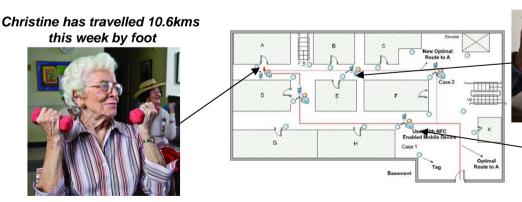
Providing **network functionalities** (association, self-organizing, data collection...)

Quality of Service (QoS) guaranteed (reliability, latency,...)

- Several Medium Access Controls supporting different traffics.
- Dynamic and Automatic relaying mechanisms mitigating the shadowing impact on PER

Adapted to Body Area Networks

Low power consumption optimization for a long autonomy


9

Wireless Localization – Applicat[°] (1)

Health management systems: Needs for precise/reliable localization and long-term tracking in daily-life environments

Ergonomic, less intrusive and reactive monitoring, prevention and rescue systems

- **Physical rehab** at home through **motion/posture capture** or non-invasive and geographically unrestricted monitoring of the patient's activity;
- Assisted mobility for physically or mentally disabled people;
- Finding people (e.g., trace elderly that are roaming in the hospital).

Doctors control progresses in your physical rehab remotely

Grand-Pa's felt down in the kitchen

Wireless Localization – Applicat^o (2)

Wellness, Fitness and Personal sports: Monitor and capture in real-time and/or analyse offline the user's mobility and gesture

- Optimize and secure the **user's performance** (e.g. offline jogging statistics, peak • and average speeds) \rightarrow Possibly correlated with other physiological informations from other sensors (link with Healthcare systems);
- Enable self-learning of the good practice/gesture with quantified feedback (e.g. • martial arts, skating);

Training with location-enabled smartphones as "personal coaches"

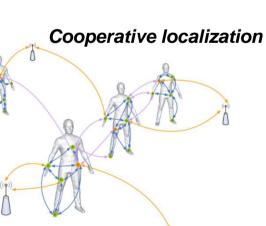
When practicing your favourite sport, you will soon realise that your smartphone is a coach full of insights that will help you measure and improve your performances, count laps, compute your speed and acceleration, detect tiredness, etc. It is also a precious and impartial tool to benchmark against your friends and competitors.

Assessing (individual and collective) performance vs. physical risk

Wireless Localization – Challenges (1)

New required features and functionalities

- Augment **indoor navigation capabilities** through motion/posture capture with limited usage of extra and costly equipments at home;
- Ensure **remote patient monitoring** (e.g. from a distant hospital or medical centre).
- Retrieve the **real-time** (time-stamped) **trajectory** of a mobile patient/user, possibly while collecting geo-referenced physiological measurements (i.e. as a function of the occupied position);
- Authorize **self-learning of mobility patterns and personal habits** out of the retrieved trajectories;
- Authorize **detection of anomalies** or unexpected events based on adequate decision tools;


Wireless Localization – Challenges (2)

Current research axes for robust, scalable and privacy-aware localization services

- Integrated radio technologies with scalable levels of precision and ranges (down to cm accuracy at low data rates);
- Opportunistic **cooperation between mobile units**, as well as decentralized and/or multi-hop localization approaches;
- **Cross-layer protocol** design to ensure synergies btw communication and localization;
- Secure location protocols limiting the location-specific infos over public channels;
- Models and algorithms robust to propagation and usage conditions
- Hybrid data fusion (heterogeneous radios and inertial units)
- Mobility learning to assist tracking

Low-power low data rate rangingenabled tags (IR-UWB)

Workshop on "Smart Systems for Healthcare and Wellness", Feb. 4th, 2014 | L. Dussopt 13

Mobility learning

Agenda

Introduction

Wireless solutions

Standards, MAC protocols, Security, Localization

Hardware solutions

Low-power radios, Miniature antennas, Reconfigurability, Integration

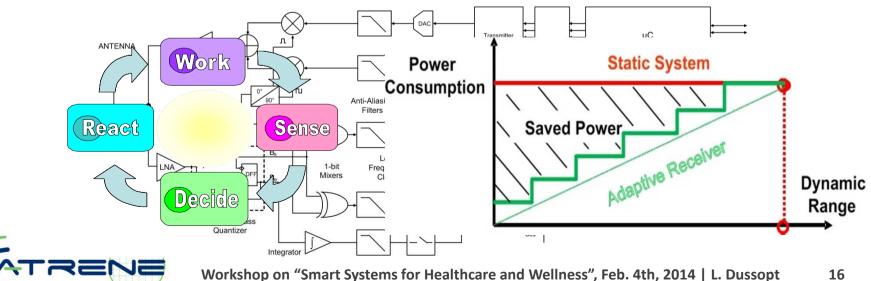
EM environment

Propagation, EM exposure and dosimetry

Conclusion

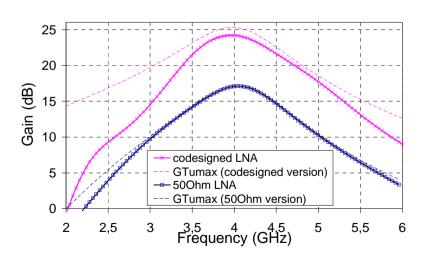
Low-power radios

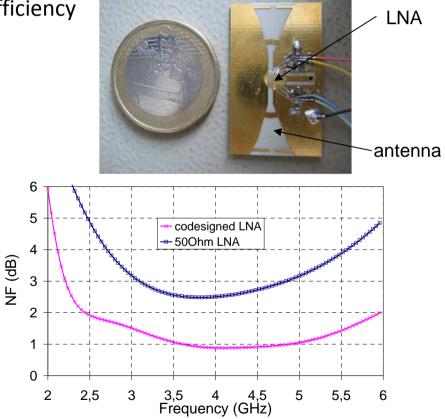
- Technology Technology shrink
 - Benefit from $F_T \nearrow$ Interoperability
 - but leakages but overhead
- Protocol Cooperative & standards


- Desier
- Technology pulled Always at the **best fit**
- Easy Digital-Analog mix Efficiency & Performance RF Architecture but tuneability but dynamically

Low-power radios

Low-power RFIC design and architectures


- Objective : **Sub-1 mW** RF transceivers
- Advanced silicon technologies (e.g. FD-SOI), low voltage operation
- **Digital-oriented** front-ends for a real-time flexibility of RFIC functions to optimize sensitivity/ linearity/ output power and power efficiency
- **Protocol-level** features to take advantage of RFIC flexibility for efficiency optimization.
- New **design methodologies**: meta-modeling at system/circuit/device levels.



Radio-Antenna codesign

Joint optimization of RF performances and miniaturization

- **PA-Antenna** : Output power and power efficiency improvement
- LNA-Antenna: Gain and Noise Figure improvement

Miniature antennas

Key requirements:

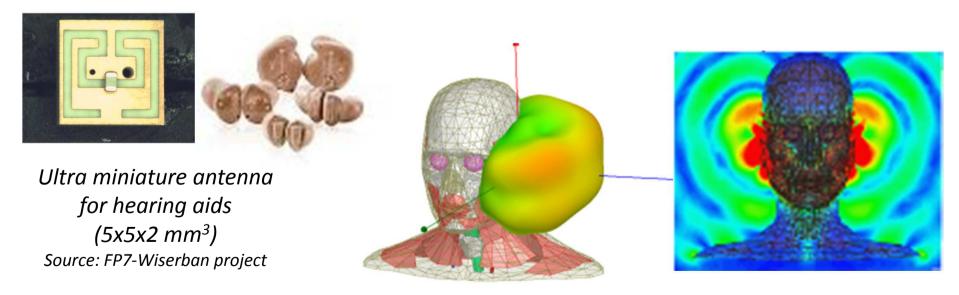
small size, efficiency, robustness to environment changes.

Small antennas: $Efficiency \times Bandwidth \propto Volume$

Typical figures for a 1 cm³ antenna

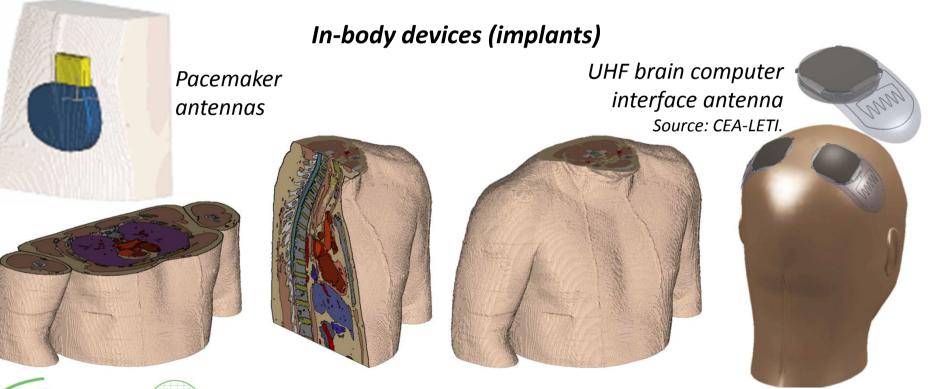
Freq./Wavelength	Max. Efficiency* Bandwidth
433 MHz / 692 cm	6.6 x 10 ⁻⁵
868 MHz / 346 cm	5.3 x 10 ⁻⁴
2.4 GHz / 12.5 cm	1.1 x 10 ⁻²

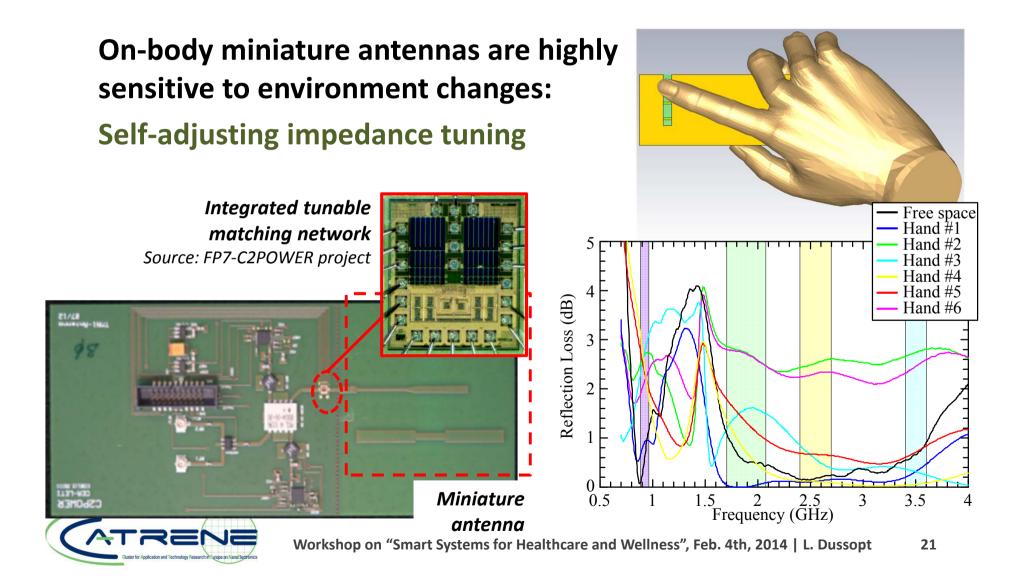
Needs / solutions: • Low-loss materials


- Accurate EM models
- Electronic tuning (frequency, impedance)

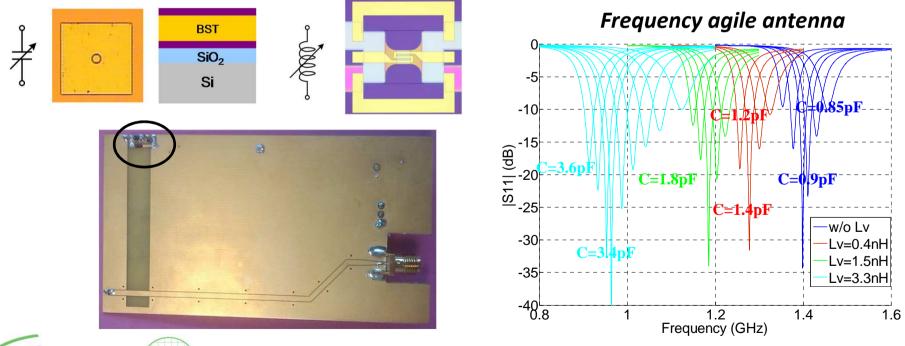
Miniature antennas

Human body environment: accurate EM models for simulation and characterization


On-body devices


Miniature antennas

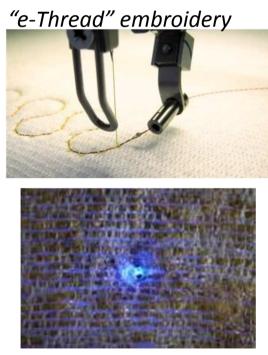
Human body environment: accurate EM models for simulation and characterization


Reconfigurable antennas

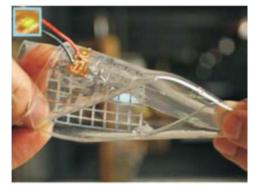
Reconfigurable antennas

Switchable/tunable RF components on antenna structure

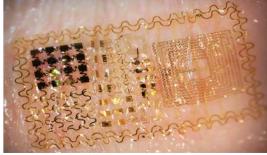
- Tunable capacitors (MEMS, BST, CMOS)
- Tunable inductors (MEMS)


Antennas integration

Embedding antennas and circuits in textiles and fabrics for comfortable wearable devices.


- Conductors in textiles
- Polymer electronics

Metal on textile



Flexible liquid metal

On-skin polymer electronics

Workshop on "Smart Systems for Healthcare and Wellness", Feb. 4th, 2014 | L. Dussopt 23

Agenda

Introduction

Wireless solutions

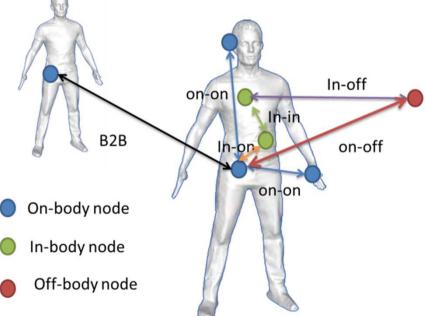
Standards, MAC protocols, Security, Localization

Hardware solutions

Low-power radios, Miniature antennas, Reconfigurability, Integration

EM environment

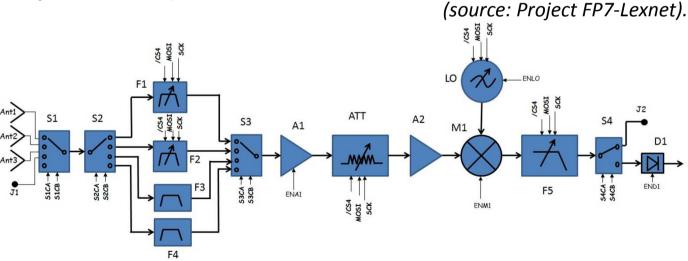
Propagation, EM exposure and dosimetry


Conclusion

Propagation

Knowledge of the propagation channel specific to the body environment

- Different devices and **different propagation models** : In-Body, On-body, Off-body
- Human tissues wave interaction and propagation models over wide frequency range (from 10 MHz to 80 GHz)
- Time-variant channel models
- Antenna-channel joint models (New criteria for antenna designs)


EM exposure and dosimetry

Growing concern about the actual EM exposure of citizens and professionals

- Accurate modeling and characterization tools
- Dosimeter embedded in smart systems: miniature, low-power, multi-standards

Measurement setup with phantom and dosimeter probe (Source: Project FP7-Lexnet).

Worksnop on "Smart Systems for Healthcare and Wellness", Feb. 4th, 2014 | L. Dussopt

Multiband dosimeter architecture

20

Agenda

Introduction

Wireless solutions

Standards, MAC protocols, Security, Localization

Hardware solutions

Low-power radios, Miniature antennas, Reconfigurability, Integration

EM environment

Propagation, EM exposure and dosimetry

Conclusion

Conclusion

Wireless communications and localization are key enablers for many smart systems applications in the field of Healthcare and Wellness

Systems interoperability based on standards

Key challenges: Cost, Power consumption, Miniaturization, Security

... leading to **S&T challenges** in all system layers:

Network Layer: self-organized architectures

Data Link Layer: flexible protocols

Physical layer: radio, antenna, propagation, integration

Smart Systems for Healthcare and Wellness

Wireless Communication Challenges and Solutions

Thank you for your attention

Acknowledgement: presentation made with the contributions of C. Delaveaud, S. Bories, R. D'Errico, V. Berg, E. Mercier, M. Maman, B. Denis (CEA-Leti).

