EDA tools and methods required for formal
system level representation

By Mario Diaz Nava, Laurent Maillet-Contoz STMicroelectronics and Adam Morawiec, ECSICorporation

Nowadays the electronic systems industry observes an ever increasing customer demand for innovative
products integrating multiple heterogeneous functions. Such systems become more and more complex
but can nevertheless be implemented due to the advances in nanometer technology enabling the inte-
gration of hundreds of millions of transistors in a single chip. However, the system and microelectronic
companies, in order to remain competitive or in critical cases to survive, need to acquire and continu-
ously expand their design capabilities and dispose of manifold expertise to design and integrate these
complex systems - and this at the pressure of lowest possible cost in an extremely limited time frame.

In this context, companies mainly differentiate in their tionality, and provide efficient and proven means to
design capabilities based on designs tools, methods, refine the system representation.
standards and flows to provide unique efficient design » Offering formal methods to assess the validity of

services and competitive products. system properties at different levels of abstraction,

and to provide means to check that refinement

Systems-on-Chip (SoCs) are contributing to the imple- of the system has not introduced any issue, if the
mentation of systems with ever increasing complexity. refinement itself can not be proven as correct-by-
It is now commonly understood that traditional design construction.

techniques are no longer suited, and there is an obvi- » Improving the high level synthesis methods to
ous need for new design flows starting at system level. provide effective and general purpose tools, able

to deal with regular C/C++ code without limiting
System Level Design Challenges themselves to a very constrained subset of these
As this is well known now, systems become more and languages.
more complex, due to several factors: » Completing the standardization effort, in some areas
standardization process has been already carried
» Increase of the number of transistors integrated on out. For example, the SPIRIT consortium defines

one chip (Moore's Law). the design and IP exchange formats, or the OSCI

Increase of the heterogeneity of components, by
the integration of RF, analog, digital blocks, and
involving multi-processor systems in charge to run
huge software stacks, co-operating to control hard-

consortium defines standard memory-mapped bus

APls. Other areas need to be standardized address-
ing higher levels of abstraction to capture the overall
functionality of the entire system, before hardware/

ware blocks, but also offering significant parts of the software partitioning.
algorithmic part of the system. » Creating, as an ultimate goal, a truly interoperable
» Difficulties for the integration of subsystems com- ecosystem of tools, models and related standards
ing from different providers (internal first, but also to support a component-of-the-shelf approach, valid
third parties). both for software and hardware components (RF,
» Reuse of hardware and software components in dif- analogue and digital) in a unified way.
ferent contexts.
» Testing the system implies (re)testing of all subsy- System Level Design methods will only be adopted
stems involved. with major changes in the culture and organization of
semiconductor companies. Core competencies will
This creates new challenges in term of design flows, move from purely hardware experts, toward software
to master the complexity, increase the reliability of the skilled engineers, and people able to capture the overall
system, while addressing time to market constraints as complexity of the mixed hardware/software systems.
well. Whereas the design at RTL is now well understood Other competencies to define, design and optimize
and stable in terms of design processes, System Level system architectures or to analyze overall system per-
Design (SDL) is still in its infancy. The techniques asso- formances will gain more and more importance in the
ciated to this level provide lots of advantages, but are entire design process.
at the moment limited to experts, who have developed
their own, and usually in-house expertise, methods and One important consequence will also be the dramatic
tools. SDL techniques still have to mature to be deployed ~ change in term of project management practices, to
widely in the industry by targeting several objectives: shift from allocating software resources late in the
project to massively investing in system and software
» Moving one step forward in the definition of meth- resources in parallel from the very beginning of the
ods and tools to capture the overall system func- project.

6002 L0 Wniiuaoepa Janajsmau | [pbaidspjaload |

LL ®1es

winJiusd uoljewolne ubBisap o1u01329|9

6002 L0 Wwnnuaoeps lenejsmau | [pbaidspiaload L

ZL aues

Abstraction levels for system modeling

People have worked for years to define appropriate
levels of abstractions, modeling languages and tools
to shift from one level to another. It is now widely
accepted that one can define the following levels (see
figure 1.07).

System functionality

Capture of the overall system functionality. There is so
far no notion of hardware or software architecture, only
functional blocks are connected together to provide
the functionality. This level is usually described as a
document, written in natural language, sometimes also
accompanied with some C or Matlab code.

Subsystem level

The system is decomposed into several subsystems.
First system architecture is defined. The functionality
is modeled at the subsystem level. Still some open
options remain between hardware or software. From
this level, Transaction Level Models (TLM) might be
implemented. They might be black boxes representing
the overall functionality of the block (regardless of the
hardware or software final implementation), or white
boxes that effectively execute the real software on top
of a processor model, in conjunction with models of
the hardware components of the subsystem.

Fig. 1.07: System components and its higher levels of representation

Component level

Hardware blocks are refined towards Register Transfer
Level (RTL), where the traditional design methods are
applied.

A continuous path from very early system specifica-
tion down to implementation is today a dream. Several
flows are therefore needed to bridge the gap between
these levels. This causes significant risks of discrepan-
cies between the levels, leading to broken silicon. As of
today, there is a certain gap between tools and meth-
ods used before hardware/software partitioning, deal-
ing with system functionality, and those used after.

Two categories of complementary approaches are used
for different activities, during different project phases:

Modeling of non functional attributes of the system

» Usually developed very early in the design cycle,
before or just after hardware/software partitioning.

» Define profiles/scenarios/use cases to be investi-
gated (best, worst, average, peak, etc.).

» Suited for architecture analysis (power, latency,
bandwidth analysis, etc.).

Architectural model of the system:

» Developed after hardware/software partitioning.

» Transaction Level models, suited for functional veri-
fication and firmware/software development.

Architectural models may themselves be refined
from purely untimed, to approximately timed, through
loosely timed models. As a complement, high level
synthesis techniques offer support to move from a C
based model to an RTL model. At the moment, these
techniques still impose significant constraints on the
form of the input code.

The approaches above are sometimes coupled to cre-
ate hybrid platforms, where the functional model drives
the non-functional part of the simulation.

Different approaches for “formal”system repre-
sentation

Virtual prototypes are now in deployment to address
needs for pre-silicon software development, and early
functional verification. This raises new challenges to
ensure consistency between the evolutions of the
specification, evolutions of the virtual platform integrat-
ing various IP models, and evolutions of the embedded
software.

This calls for getting new tools and methods for effi-
cient Hardware-Software co-design. In particular, the
synchronization of the various views of the model
(functional, architectural, implementation) and the reus-
ability of them in different contexts is a key challenge
to be shortly addressed. Characterization of the views
of a model is now required, to get a systematic under-
standing of: the programming interfaces of the model,
the list of supported features (and the associated level
of completeness and test) and the known limitations
and issues.

Another challenge appears to be able to globally cap-
ture and maintain the representation of the system
functionality. Traditional techniques, usually using
specifications written in natural languages are no more
suited. The ever growing complexity of the systems
makes the document difficult to keep up-to-date, and is
subject to different interpretation by the various stake-
holders. One step forward has been the availability

of TLM models that provide a de facto golden model
shared by different activities, and IP-XACT representa-

tions of the interfaces that can be extracted from a
textual specification. Still, they can not be easily cou-
pled with system level use cases that are captured far
before in the design cycle.

Several approaches to capture system functionality and
requirements are currently investigated. Among them,
we can list:

» Top/down approaches, aiming at breaking the com-
plexity of the system under development into sub-
systems.

» Bottom/up approach, by integrating components
to create complex system functionality. This raises
new challenges, by considering SoCs as Compo-
nents off the Shelf (COTS), which must adhere to
well identified interfaces, and offer proper functional
contracts. This requires expressing properties at
the component level, and to provide mechanisms to
guarantee that they are still valid once the compo-
nents are integrated in a complex system.

» Techniques coming from the software engineering
community are also considered. In particular, one
observes these days some convergence between
Model Driven Engineering (MDE) and design prac-
tices from hardware community. MDE is seen as
a way to capture system functionality and require-
ments, and provide support to derive software and
hardware parts of the system. From a project per-
spective, it helps in keeping consistency between
capture of high level, early requirements and
implementation, tests and validation of the system.
System houses as Airbus, ASTRIUM, or Thales are
very involved in this area. On academic side, labs
as KU Leuven, Eindhoven University of Technology,
University of Milan, INRIA, or CEA-LIST have key
competencies to address these topics, whereas
several CAD vendors like CoFluent Design are also
in the picture.

» Graphic-based system requirements and system
function representation enabling to raise abstraction
level on which the design process is initiated and
making possible to express system functionality in
the context of its environment (e.g. use cases).

» Formal system specification and refinement
methods enabling to define the system starting
from the set of requirements and refining it to
representations from which software and hardware
components can be derived with state-of-the art
methods (RTL implementation and SW compila-
tion)

Identification of key system properties and verifica-
tion that they are still valid at each level of abstraction
are today a promising research topic. Formal methods
though are not mature enough to be applied at the
system level, for several fundamental reasons: input
languages are general purpose, no assertions or prop-
erty support, and system-wide approaches create state
explosion, calling for more modular concepts.

Conclusions

European competence lies in system design, a com-
prehensive approach how to specify, model and imple-
ment complex systems. This competence should be
supported by advanced design methods, appropriate
specification formalisms, design data representations
and efficient tools. Moreover, these methods and rep-
resentations should be supported wherever appropriate
by standards to enable to leverage from the commonly
accepted rather than specific and proprietary solutions.
All these elements brought together will form an eco-
system in which the systems can be designed and vali-
dated in the most effective way and all involved parties
in the product development value chain will find their
clear market positioning.

Author & Cont@ct:

Mario Diaz Nava is a STMicroelectronics-Grenoble
R&D Cooperative Programs Manager. He has worked
at STMicroelectronics for 18 years and has more than
25 years of experience in the system architecture and
design of communication circuits and design metho-
dologies. He has a PhD in Computer Science from
National Institute Polytechnic of Grenoble and can be
reached at mario.diaznava@st.com.

Laurent Maillet-Contoz is a CAD Manager at STMicro-
electronics, responsible for the transaction-level mode-
ling (TLM) activity in the System Platforms Group. After
a PhD thesis on Hardware/Software CoDesign at the
University of Montpellier, France, he has been involved
in the definition of the TLM methodology within ST
since 2000, and has contributed to the definition of the
Open SystemC Initiative’s (OSCI) TLM standard. His
main interests are system modeling and simulation,
and formal methods for SoC verification. He can be rea-
ched at laurent.maillet-contoz@st.com.

Adam Morawiec received his MSc degree in electro-
nic system design in 1993 from the Silesian Technical
University in Gliwice, Poland and his DEA (Diplome
d'Etudes Approfondies) in 1996 and PhD in 2000 in
Microelectronics at the TIMA Laboratory / Université
Joseph Fourier, Grenoble, France in the domain of
verification and simulation performance methods. He
works for ECSI (initially part time since 1994 and then
full time since 2000) in the R&D project development
and project management in the domain of system
design methods and standards, in setting up industry
and research consortia, in organization of advanced
training and workshop in system design area. Since
September 2005 he is the director of ECSI. He can be
reached at Adam.Morawiec@ecsi.org.

6002 L0 Wniiusoepa Jenajsmou | [pBaidspiafoid L

€L a1es

